
The Robotics Butler Scenario:
Selected Details and Algorithms

Christian Schlegel
Prof. Dr.

M.Sc. Alex Lotz M.Sc. Dennis StampferM.Sc. Matthias Lutz

M.Sc. Andreas Steck
Dr. Siegfried Hochdorfer

21.08.2012 Talk Schlegel @ Willow Garage 2 - 85

21.08.2012 Talk Schlegel @ Willow Garage 3 - 85

Intel C
ore2Duo P8800

4 GB RAM

21.08.2012 Talk Schlegel @ Willow Garage 4 - 85

21.08.2012 Talk Schlegel @ Willow Garage 5 - 85

What is different in robotics and what we need...

 use models for the entire lifecyle of the robot
 models are refined step-by-step until finally they become executable
 variation points: design-time (component builder, system integrator), runtime (robot)

• differences of robotics compared to other domains originate from the need of a robot to cope
with open-ended environments while having only limited resources at its disposal

• due to the enormeous sizes of the problem space and the solution space in robotics, there will
always be a deviation between design-time and run-time optimality

21.08.2012 Talk Schlegel @ Willow Garage 6 - 85

Managing Execution-Variants at Run-Time
Sequencer Orchestrates the System

Sequencing Layer with SmartTCL:
• bridges between continuous

processing and event-driven task
execution

• orchestrates the software
components in the system

• assign decision spaces to
components

• involve dedicated experts for run-
time binding of designed
variability

• coordinate analysis, simulation
and planning capabilities

– send parameters and configurations
– switch components on/off to

manage resources
– change the wiring between the

components
– query information and wait for

events
– ...

21.08.2012 Talk Schlegel @ Willow Garage 7 - 85

Overall Architecture

21.08.2012 Talk Schlegel @ Willow Garage 8 - 85

The Robotics Butler Scenario

21.08.2012 Talk Schlegel @ Willow Garage 9 - 85

Details Task-Nets and Task Execution: SmartTCL

Model-driven software
development for robotics

Active object recognition with
information-driven sensor
placement

Learning from
demonstration for
manipulation

Resource-aware SLAM

Task-nets for
conditional reative task
execution

Overall principles
behind our work

Needs?

Benefits?

Goals?

Use Cases?

Technology?

• focus on tools for systematic engineering of
service robotic applications (e.g. MDSD)

– separation of roles
– separation of concerns

• focus on robust and efficient key
functionalities and components

– extending and merging so far
separated techniques

Achieve suitability
for everyday life of
service robots

Approach?

21.08.2012 Talk Schlegel @ Willow Garage 10 - 85

approach
kitchen

Part VII

task-net
navigation

Composability, Reusability, Separation of roles (designer, robot)

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 11 - 85

approach
kitchen

pour
sugar

Part VII

task-net
pour something

Composability, Reusability, Separation of roles (designer, robot)

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 12 - 85

approach
kitchen

pour
sugar

Part VII

task-net
manipulation

Composability, Reusability, Separation of roles (designer, robot)

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 13 - 85

reuse navigation

approach
kitchen

pour
sugar

approach
coffee machine

Part VIIComposability, Reusability, Separation of roles (designer, robot)

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 14 - 85

reuse navigation

make coffee
approach

kitchen

pour
sugar

approach
coffee machine

Part VII

task-net
make coffee

Composability, Reusability, Separation of roles (designer, robot)

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 15 - 85

make coffee

reuse navigation

reuse manipulation

approach
kitchen

pour
sugar

approach
coffee machine

Part VIIComposability, Reusability, Separation of roles (designer, robot)

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 16 - 85

...

...

approach
kitchen

approach
coffee machine make coffee

deliver coffee

pour
sugar

reuse navigation

reuse manipulation

composes complex tasks
by reuse

Part VIIComposability, Reusability, Separation of roles (designer, robot)

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 17 - 85

?

unification

active TCBs

not yet
bound
TCBs

Knowledge Base
TCBs

rules

event-handler

Model of Components

Model of World

Rooms, Locations,
Objects, Persons, ...

. . .

select between alternatives

Part VIIRun-time: managing execution variants, TCB selection, late binding

Details Task-Nets and Task Execution: SmartTCL

(a) select between
 alternatives at runtime

(b) handle contingencies

(c) delete, add or replace
 parts of the task-tree
 at runtime

 at runtime a task-tree is dynamically created, modified and executed

 composes reusable action-plots to complex behaviors

 manages execution variants and contingencies of real world environments

 provides context and situation-driven task execution

 mediates between symbolic and subsymbolic mechanisms of information processing

(a)

(c)

(b)

21.08.2012 Talk Schlegel @ Willow Garage 18 - 85

cleanup

recognize
objects stack

stores recognized
objects in KB

the number of different variants how to stack
the different objects is huge
→ calling a symbolic planner in that
 specific situation helps to manage
 the combinatorial explosion

Part VIIRun-time: managing execution variants, TCB selection, late binding

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 19 - 85

symbolic planner

transform knowledge
about recognized
objects into PDDL

this is encoded within the action plot of the TCB stack:

• the recognized objects are queried from the KB
• the stable domain description (PDDL) as well as the
 situation specific fact description (PDDL) are created
 and forwarded to the symbolic planner

the SmartSymbolicPlanner component
provides the service to call symbolic
planners like ff, metric-ff, lama, ...

cleanup

recognize
objects stack

Part VIIRun-time: managing execution variants, symbolic planner

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 20 - 85

symbolic planner

(grasp cup1)
(stack cup1 cup3)
(grasp cup2)
(stack cup2 cup3)
(grasp cup3)
(transport)

transform knowledge
about recognized
objects into PDDL

generate plan
(metric-ff)

the generated plan is returned
to the stack TCB

cleanup

recognize
objects stack

Part VIIRun-time: managing execution variants, symbolic planner

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 21 - 85

symbolic planner

grasp
cup-1

stack-into
cup-3

grasp
cup-2

stack-into
cup-3

grasp
cup-3

transport
pose

transform plan steps into
SmartTCL Task Coordination

Blocks (TCBs)

reusable TCBs

add TCBs to
task-tree

the knowledge how to
transform the plan steps into
TCBs is encoded within the
action plot of the TCB stack

cleanup

recognize
objects stack

cleanup

recognize
objects stack

(grasp cup1)
(stack cup1 cup3)
(grasp cup2)
(stack cup2 cup3)
(grasp cup3)
(transport)

transform knowledge
about recognized
objects into PDDL

generate plan
(metric-ff)

Part VIIRun-time: managing execution variants, symbolic planner

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 22 - 85

cleanup

recognize
objects stack

grasp
cup-1

stack-into
cup-3

grasp
cup-2

stack-into
cup-3

grasp
cup-3

transport
pose

Part VIIRun-time: managing execution variants, symbolic planner

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 23 - 85

cleanup

recognize
objects stack

grasp
cup-1

stack-into
cup-3

grasp
cup-2

stack-into
cup-3

grasp
cup-3

transport
pose

Part VII

Knowledge Base
TCBs

rules

event-handler

Model of Components

Model of World
Rooms, Locations,
Objects, Persons, ...

. . .

Run-time: managing execution variants,
 rules to recover from contingencies

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 24 - 85

cleanup

recognize
objects stack

grasp
cup-1

stack-into
cup-3

grasp
cup-2

stack-into
cup-3

grasp
cup-3

transport
pose

Part VII

Knowledge Base
TCBs

rules

event-handler

Model of Components

Model of World
Rooms, Locations,
Objects, Persons, ...

. . .

Run-time: managing execution variants,
 rules to recover from contingencies

Details Task-Nets and Task Execution: SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 25 - 85

 contingencies are handled by the parent node

 return-values (e.g. errors) are passed along the node
hierarchy similar as it is done by catch-throw mechanisms

 rules can modify the task-tree by adding or deleting nodes

 principle of subsidiarity

cleanup

recognize
objects stack

grasp
cup-1

stack-into
cup-3

grasp
cup-2

stack-into
cup-3

grasp
cup-3

transport
pose

(ERROR
(COLLISION))

Error
e.g. collision

Part VII

Knowledge Base
TCBs

rules

event-handler

Model of Components

Model of World
Rooms, Locations,
Objects, Persons, ...

. . .

Run-time: managing execution variants,
 rules to recover from contingencies

Details Task-Nets and Task Execution: SmartTCL

 as rules are associated to the parent node (stack), the contingency handling works independent
from the concrete plan which was generated

 rules “know” whether to repair the plan locally or to delete the plan and generate a new one.

21.08.2012 Talk Schlegel @ Willow Garage 26 - 85

The Robotics Butler Scenario

„A coffee
with sugar,
please“

Intel C
ore2Duo P8800

4 GB RAM

21.08.2012 Talk Schlegel @ Willow Garage 27 - 85

Example: Pour sugar into coffee mug

; tcb-pour-sugar
(define-tcb (tcb-pour-sugar => ?cupId)

(rules (rule-get-obj-no-obj-pour-sugar
 rule-sugar-grasp-obj-failed
 rule-sugar-grasp-obj-collision
 rule-sugar-position-object-failed
 rule-trigger-sugar-position-object-failed
 rule-manipulator-transport-no-path
 rule-manipulator-transport-collision))
 (action (
 (format t "=========================>>> tcb-pour-sugar ~%")))
 (plan (

 (tcb-load-env-into-openrave-location kitchen-unit-1)
 (tcb-obj-recog-setup kitchen-unit-1)
 (tcb-obj-recog kitchen-unit-1 => ?envID)
 (tcb-get-obj-id ?envID SUGAR-DISPENSER => ?sugarId)
 (tcb-get-obj-id ?envID IKEA-CUP-SOLBRAEND => ?cupId)

 (tcb-say "I pour the sugar into the cup.")
 (tcb-grasp-object real ?sugarId)
 (tcb-get-sugar-cup-pose ?cupId => ?x1 ?y1 ?z1)
 (tcb-position-object real ?sugarId ?x1 ?y1 ?z1 -20 nil t)
 (tcb-manipulator-angles => ?j1 ?j2 ?j3 ?j4 ?j5)
 (tcb-manipulator-pose-direct ?j1 ?j2 ?j3 ?j4 5.5 NO_OP) ;; 5.5 = 315 Grad
 (tcb-get-obj-pose-kb ?sugarId => ?x2 ?y2 ?z2)
 (tcb-position-object real ?sugarId ?x2 ?y2 ?z2 0 t t)

 (tcb-grasp-object real ?cupId)
 (tcb-manipulator-pose transport))))

(define-rule (rule-sugar-position-object-failed)
(tcb (tcb-position-object real ?obj-id ?x ?y ?z ?roll ?open ?level))

 (return-value (ERROR (POSITIONING FAILED)))
 (action (

 (format t "RULE: (ERROR (POSITIONING FAILED)) ~%")
 (tcl-delete-plan)
 (tcl-push-plan :plan `(

 (tcb-clear-env-openrave)
 (tcb-load-env-into-openrave-location kitchen-coffee-1)
 (tcb-get-obj-pose-kb ?sugarId => ?x2 ?y2 ?z2)
 (tcb-position-object real ?sugarId ?x2 ?y2 ?z2 0 t t)
 (tcb-trigger-return (ERROR (POUR-SUGAR-FAILED)))))
 '(ERROR (POUR-SUGAR-FAILED)))))

21.08.2012 Talk Schlegel @ Willow Garage 28 - 85

Example: Pour sugar into coffee mug

;; tcb-grasp-object
(define-tcb (tcb-grasp-object real ?obj-id)
 (action (
 (format t "==========>>> tcb-grasp-object real ~d ~%" '?obj-id)
 (let* ((obj (tcl-kb-query :key '(is-a id)
 :value '((is-a object)(id ?obj-id))))

 (pose (get-value obj 'pose))
 (simple-grasping (get-value obj 'simple-grasping))
 (speech (get-value obj 'speech)))
 (tcl-state :server 'openrave :state "neutral")
 (format t "simple grasping ~s~%" simple-grasping)
 (tcl-param :server 'openrave :slot 'GRASPING_SIMPLE
 :value simple-grasping)
 (tcl-param :server 'openrave :slot 'PARALLELIZATION_ON)
 (tcl-state :server 'manipulator :state "trajectory")
 (tcl-state :server 'openrave :state "trajectory")
 (tcl-activate-event :name 'evt-traj

 :handler 'handler-grasping
 :server 'manipulator
 :service 'manipulatorevent
 :mode 'continuous)

 (tcl-activate-event :name 'evt-grasp-openrave
 :handler 'handler-grasping-openrave
 :server 'openrave
 :service 'trajectoryevent
 :mode 'continuous)
 (format t "pose: ~s ~%" pose)
 (tcl-send :server 'openrave

 :service 'trajectory
 :param (append (list 'POSE) pose (list 'OPEN_BEFORE_CLOSE_AFTER)))

 '(SUCCESS ())))))

;; handler-grasping
(define-event-handler (handler-grasping)
 (action (
 (format t "=========================>>> HANDLER GRASPING ~s ~%~%" (tcl-event-message))
 (cond
 ;; ok
 ((equal (tcl-event-message) '(goal reached))
 (format t "=========================>>> goal reached !!! obj-id ~s ~%" '?obj-id)
 (tcl-state :server 'openrave :state "neutral")
 (tcl-param :server 'openrave :slot 'OPENRAVE_GRASPOBJ :value '?obj-id)
 (tcl-kb-update :key '(is-a id)
 :value `((is-a OBJECT) (id ,?obj-id) (status IN_GRIPPER)))
 (tcl-abort)
 '(SUCCESS ()))

 ;; slipped out

((equal (tcl-event-message) '(goal reached gripper empty))
 (format t "=========================>>> goal reached gripper empty !!! obj-id ~s ~%" '?obj-id)
 (tcl-send :server 'tts
 :service 'say
 :param (format nil "Oh sorry, it seems that the object slipped out of my gripper."))
 (tcl-state :server 'openrave :state "neutral")
 (tcl-param :server 'openrave :slot 'OBJ_DELETE :value '?obj-id)
 (tcl-kb-update :key '(is-a id)
 :value `((is-a OBJECT) (id ,?obj-id) (status NOT_GRASPABLE)))
 (tcl-abort)
 '(ERROR (GRASPING FAILED)))

 ;; collision
 ((equal (tcl-event-message) '(collision))
 (format t "=========================>>> collision detected !!! obj-id ~s ~%" '?obj-id)
 (tcl-send :server 'tts
 :service 'say
 :param (format nil "Oh sorry, it seems that I collided with an object."))
 (tcl-kb-update :key '(is-a id)
 :value `((is-a OBJECT) (id ,?obj-id) (status NOT_GRASPABLE)))
 (tcl-abort)
 '(ERROR (GRASPING COLLISION)))

 ;; out of range
 ((equal (tcl-event-message) '(value out of range))
 (format t "=========================>>> value out of range !!! ~%")
 (tcl-state :server 'manipulator :state "neutral")
 (tcl-kb-update :key '(is-a id)
 :value `((is-a OBJECT) (id ,?obj-id) (status NOT_GRASPABLE)))
 (tcl-abort)
 '(ERROR (GRASPING FAILED)))))))

21.08.2012 Talk Schlegel @ Willow Garage 29 - 85

Example: World model / Update / Management

21.08.2012 Talk Schlegel @ Willow Garage 30 - 85

Details Active Object Recognition

Model-driven software
development for robotics

Active object recognition with
information-driven sensor
placement

Learning from
demonstration for
manipulation

Resource-aware SLAM

Task-nets for conditional
reative task execution

Overall principles
behind our work

Needs?

Benefits?

Goals?

Use Cases?

Technology?

• focus on tools for systematic engineering of
service robotic applications (e.g. MDSD)

– separation of roles
– separation of concerns

• focus on robust and efficient key
functionalities and components

– extending and merging so far
separated techniques

Achieve suitability
for everyday life of
service robots

Approach?

21.08.2012 Talk Schlegel @ Willow Garage 31 - 85

Robust object recognition is a mandatory prerequisite
for many applications
• Object recognition means...

– Detecting possible objects
– Identifying objects
– Know their position and orientation

• Robust in our terms means...
– Reliable
– Fast (enough)
– Situation dependent

• Difficult in everyday environments
– Real challenge: similar objects

Combining algorithms
• Recognition by comparing features

– Color
– Texture
– Shape

• Many different classes of objects
– Requires many different features

• Recognition by combining features
– Improves robustness

Multi-Modal Object Recognition

Shape: CupColor: Red

21.08.2012 Talk Schlegel @ Willow Garage 32 - 85

Multi-Modal Object Recognition

• Microsoft Kinect Kamera

– Depth information for every pixel

(3D pointcloud)

– Color image

– Cheap

• Detecting objects

– Detecting table top in
pointcloud

– Cluster points above table top

– Cut objects from RGB

scene image

21.08.2012 Talk Schlegel @ Willow Garage 33 - 85

Combining algorithms
• Run multiple algorithms on every

object candidate

– Many algorithms available

– Reduces recognition problem for
the single algorithm

– Requires an interface to collect
and interpret the results

• Algorithms report recognition
result as probability

– Tells how reliable recognition is

– Semantic interface

• Fusing the single hypotheses
to a final result

– Probabilistic

– Use established probabilistic methods

Multi-Modal Object Recognition

21.08.2012 Talk Schlegel @ Willow Garage 34 - 85

Combining Algorithms

• A measure of quality is required
– Defines the quality of an algorithm
– How useful is an algorithm to recognize an object?
– Probabilistic
– Depending on the object

• Fusing the algorithm results considering the recognition probability and algorithm quality

Multi-Modal Object Recognition

21.08.2012 Talk Schlegel @ Willow Garage 35 - 85

Multi-Modal Object Recognition - Results

21.08.2012 Talk Schlegel @ Willow Garage 36 - 85

Active Object Recognition: Motivation

• Performance of “scene recognition”
often not enough
– Low / insufficient quality of sensor data,
– Bad perspective,
– Occlusion, etc.

• Idea
– Active acquisition of new sensor data from other views on the object
– Use images from camera mounted on manipulator

21.08.2012 Talk Schlegel @ Willow Garage 37 - 85

Active Object Recognition: Structural Overview

21.08.2012 Talk Schlegel @ Willow Garage 38 - 85

Active Object Recognition

Viewpoint generation and selection
• Generating camera positions to point

at features on the object
– Barcodes
– Texts/labels

• Evaluate viewpoints
– The quality of a feature seen from viewpoint
– Estimated quality of sensor data
– Effort for manipulation

• Camera is positioned at “best” viewpoint with the highest utility
• All objects in the scene are considered for manipulation

Evaluated viewpoints

• Extending object recognition by manipulation
– Requires taking the environment into account

• Recognition process:
– 1: Object recognition on full scene
– 2: Generate viewpoints
– 3: Select one viewpoint
– 4: Simulate and manipulate
– 5: Run object recognition on new

 data
– 6: Include new observation

• Probabilistic fusion of results
• Repeats as necessary

– Required certainty configurable
– e.g. juice vs. medicine

Viewpoints generated for a milk box

21.08.2012 Talk Schlegel @ Willow Garage 39 - 85

Active Object Recognition: Experiment

Observation 1: look at object 1 => manipulator collision
Observation 2: look at object 1 => successfully classified
Observation 3: look at object 2 => not sufficient classification quality
Observation 4: look at object 2 => now sufficient classification quality

21.08.2012 Talk Schlegel @ Willow Garage 40 - 85

Overview

Model-driven software
development for robotics

Active object recognition with
information-driven sensor
placement

Learning from
demonstration for
manipulation

Resource-aware SLAM

Task-nets for conditional
reative task execution

Overall principles
behind our work

Needs?

Benefits?

Goals?

Use Cases?

Technology?

• focus on tools for systematic engineering of
service robotic applications (e.g. MDSD)

– separation of roles
– separation of concerns

• focus on robust and efficient key
functionalities and components

– extending and merging so far
separated techniques

Achieve suitability
for everyday life of
service robots

Approach?

21.08.2012 Talk Schlegel @ Willow Garage 41 - 85

base laser

mapper planner

speech ...

Component Shelf

base laser

mapper planner...

Software Concepts for Service Robots:
Model-Driven Software Development

21.08.2012 Talk Schlegel @ Willow Garage 42 - 85

● relevant information is hidden in source files (parameters, properties, ports, resource information)
=> source code has to be analyzed

● no explicit descriptions of properties of software building blocks
=> no black box reuse possible

● domain experts (e.g. cleaning business)
need to become robotics experts (or vice versa)

System
Integrator

Component
Developer

Parameter

Properties

Ports
(Interfaces)

Resource
Information

Non-Functional
Properties (NFP)

QoS

System Integrator
(composes systems)

Component Developer
(creates components)

Software Concepts for Service Robots:
Current Situation / State-of-the-art

Source Code

The robot has no access
to that (hidden) information
to reason on it at run-time.

21.08.2012 Talk Schlegel @ Willow Garage 43 - 85

No separation of concerns (in order to reduce complexity)
- computation,

communication,
configuration (parameters at component and system level),
coordination (orchestration, resource management)

No separation of roles (in order to support specialization)
- end users, system integrators,

component developers, framework developers

Academia so far circumvented this challenge by not separating between component
builders and system integrators

Separation of roles and separation of concerns is essential for successful markets
● lower risks, share efforts, provide second source, reduce costs,

reduce development time, reduce time-to-market, increase robustness,
increase quality, …

Software Concepts for Service Robots:
Current Situation / State-of-the-art

21.08.2012 Talk Schlegel @ Willow Garage 44 - 85

Software Concepts for Service Robots:
What we want to have: separation of roles, concerns

„freedom from choice“
in order to ensure

system-level conformity

navi-
gation

Component
Builder

object
recgnition

Component
Builder

„inner view“

specialist with deep expertise

return-of-investment
based on multiple use

of components

21.08.2012 Talk Schlegel @ Willow Garage 45 - 85

base navi-
gation

speech ...

System
Integrator

System
Integrator

make system-level bindings
and adjustments

black-box view
„outer view“

navi-
gation

Component
Builder

object
recgnition

Component
Builder

application domain
experts

Software Concepts for Service Robots:
What we want to have: separation of roles, concerns

21.08.2012 Talk Schlegel @ Willow Garage 46 - 85

Component
Builder

System
Integrator

Component Shelf

planner

Name: planner
Ports:
 mapClient : pushNewestClient<gridmap>
 goalServer : pushNewestServer<goal>
 plannerEvent : eventServer<goalStatus>
 state : stateServer
 param : parameterServer
 ...
States:
 active, neutral, ...

Parameters, Properties,
Ports (Interfaces), Resource
Information, …

ARE EXPLICATED IN THE MODELS
AND ARE NOT HIDDEN IN THE SOURCE FILES

planner
outer view

inner view

Software Concepts for Service Robots:
What we want to have: separation of roles, concerns

21.08.2012 Talk Schlegel @ Willow Garage 47 - 85

 CBSE (Component Based Software Development)
 SOA (Service-Oriented Architecture)
 MDSD (Model-Driven Software Development)

 Separating the roles of the component builder, system integrator and the robot requires to identify, specify and
explicate stable structures as well as variation points each role can rely on.

 These stable structures and variation points build the ground for a model-based representation. Representing
the structure of the component as meta-model enforces compliance of components with the meta-model via a
MDSD-toolchain.

 We identified the component hull as the key structure to address the above challenges.

Software Concepts for Service Robots:
Where to start?

21.08.2012 Talk Schlegel @ Willow Garage 48 - 85

send one-way communication
query two-way request/response
push newest 1-to-n distribution
push timed 1-to-n distribution
event asynchronous conditioned notification

The SmartSoft Communication Patterns
component configuration

state activate/deactivate component services
wiring dynamic component wiring
diagnose introspection of components

(internally based on communication patterns)

The SmartSoft Services
param

− Separate inside view (component builder) from outside view (system integrator)
− Separate stable execution container from implementational technologies (middleware, OS)
− MDSD to generate component hull ensures compliance at the component and system level while giving

freedom within a component
Difference in robotics:
runtime reconfiguration
due to open-ended
environments

- Services are defined by a Communication Pattern and Communication Objects
- Communication Objects are communicated between components: platform-independent, by-value
- Services are offered / used by components via Ports

Approach: service-oriented component model
=> master component hull by MDSD

21.08.2012 Talk Schlegel @ Willow Garage 49 - 85

The SmartSoft Component Model:
Excerpt of the SmartMARS Meta Model

21.08.2012 Talk Schlegel @ Willow Garage 50 - 85

The SmartSoft Component Model
Mapping to different Middlewares

21.08.2012 Talk Schlegel @ Willow Garage 51 - 85

Model-Driven Software Development:
Component Builder View

S
cr

ee
nc

as
t

„B
ui

ld
 a

 C
om

p o
ne

nt
 H

ul
l“

21.08.2012 Talk Schlegel @ Willow Garage 52 - 85

Model-Driven Software Development:
System Integrator View

21.08.2012 Talk Schlegel @ Willow Garage 53 - 85

Component Shelf
Reusable Components

System Integration

base navi-
gation

speech ...

System Level Properties / Bindings / Conformance Checks

Model-Driven Software Development:
System Integrator View

21.08.2012 Talk Schlegel @ Willow Garage 54 - 85

Model-Driven Software Development
System Integrator View – Butler Scenario

21.08.2012 Talk Schlegel @ Willow Garage 55 - 85

Model-Driven Software Development
System Integrator View – Butler Scenario

21.08.2012 Talk Schlegel @ Willow Garage 56 - 85

D.J. Hoch, W. Huhn, U. Naeher, A.E. Zielke:
The Race to Master Automotive Embedded
Systems Development, McKinsey, 2006

• productivity gain in model-based software
engineering is estimated to be about 30%

• MBD is one of the most influential levers
and can lead to step-change increase in
both productivity and quality

● significant savings in terms of man power for setting new and different robots into service
● “separation of roles and concerns” supported by a model-driven software approach can initiate a

shift in robotics from technology driven exploitation to use-case driven exploitation of robotics
technology

● design-abstraction can bridge the gap between academia and industry => future perspective:
- collaborate at the level of meta-models, models, software tools, etc.
- compete at the level of implementations, specialized frameworks, proprietary functionalities, etc.
- allow for a symbiotic eco-system of large companies and SMEs, specialists and integrators

Model-Driven Software Development:
The future of a service robotics market

21.08.2012 Talk Schlegel @ Willow Garage 57 - 85

Open-ended environments: a tremendous amount of situations
• how to spend scarce resources in a most appropriate way?

– acting efficiently
– achieve a high degree of robustness
– maintain a high success rate in task fulfillment

Goal
• flexible response to dynamic environments
• complexity and variety of tasks: multi-purpose robot
• be able to put in as much knowledge about tasks as possible

Challenges: always deviation between design-time/run-time optimality
• even most skilled robotics engineer is not able at design-time to

– identify and enumerate all eventualities in advance
– properly code configurations, resource assignments, reactions

(even not efficient at all due to the combinatoric explosion of possible situations and skill parameterizations)
• not possible just to (re)plan at run time in order to take into account latest information as soon as it becomes available

(computational complexity of planning far too high when it comes to real-world problems, i.e. generate action plots given partial
information while taking into account additional properties like safety and resources)

Motivation for a different approach:
• make it as simple as possible for the designer to express variability at design time
• robot needs to be able to bind variability at run time based on the then available information
• At design time, we also specify which problem solver (symbolic planner, constraint solver, etc.) to use to bind which variation

point.
• At run time, the robot then involves the prearranged and dedicated problem solvers.

Overall, this improves task execution quality,
optimizes robot performance and cleverly arranges
complexity & efforts between design time and run time.

How to get the coffee
to the customer as
hot as possible?

Summary

Handling of intellectual property rights
Available as Open Source

http://smart-robotics.sourceforge.net/

http://www.youtube.com/roboticsAtHsUlm

ROS-Gateway / Care-O-Bot Demo

Ready to run VMWare image

GNU LGPL

21.08.2012 Talk Schlegel @ Willow Garage 59 - 85

ZAFH Servicerobotik – what is that?

Center for Applied Research at Universities for Applied Sciences
• University of Applied Sciences Ulm

• Prof. Schlegel
• University of Applied Sciences Ravensburg-Weingarten

• Prof. Ertel, Prof. Voos
• University of Applied Sciences Mannheim

• Prof. Ihme, Prof. Wirnitzer

http://www.zafh-servicerobotik.de/
http://www.zafh-servicerobotik.de/ULM/publikationen.php
http://servicerobotik.hs-weingarten.de/publikationen.php

http://www.zafh-servicerobotik.de/
http://www.zafh-servicerobotik.de/ULM/publikationen.php
http://servicerobotik.hs-weingarten.de/publikationen.php

21.08.2012 Talk Schlegel @ Willow Garage 60 - 85

Addendum

21.08.2012 Talk Schlegel @ Willow Garage 61 - 85

What is different in robotics?
● The difference of robotics compared to other disciplines (e.g. automotive, avionics) is

neither the huge variety of different sensors, actuators, hardware platforms
nor the number of different disciplines being involved.

● We are convinced that differences of robotics compared to other domains originate
from the need of a robot to cope with open-ended environments
while having only limited resources at its disposal.

=> The best matching between current situation, proper robot behavior and
 ressource assignment becomes overwhelming even for the most skilled robot
 engineer!

● Limited resources require decisions: when to assign which resources to what activity
taking into account perceived situation, current context and tasks to be fulfilled.

● Due to open-ended real-world environments, it is impossible to statically assign resources in
advance in such a way that all potential situations arising at runtime are properly covered.

● Due to the enormeous sizes of the problem space and the solution space in robotics, there will
always be a deviation between design-time and run-time optimality.

● Therefore, there is a need for dynamic resource assignments at runtime: managing variants /
variability at runtime by late bindings of purposefully left-open variation points (models@runtime,
accessible via MDSD + DSLs)

mailto:models@runtime

21.08.2012 Talk Schlegel @ Willow Garage 62 - 85

Active Object Recognition: Structural Overview
• Extending object recognition by manipulation

– Requires taking the environment into account

• Recognition process:
– 1: Object recognition on full scene
– 2: Generate viewpoints
– 3: Select one viewpoint
– 4: Simulate and manipulate
– 5: Run object recognition on new

 data
– 6: Include new observation

• Probabilistic fusion of results

• Repeats as necessary
– Required certainty configurable
– e.g. juice vs. medicine

21.08.2012 Talk Schlegel @ Willow Garage 63 - 85

Motivation: Extensive software costs and high risks
(see EFFIROB study / Fraunhofer IPA:

 “efficient software engineering is decisive to lower
 development costs of service robotic applications”)

=> SWE already is bottleneck towards implementing service
 robotic applications in an economic and feasible way

=> SWE is a major hurdle when it comes to developing
 markets for service robots and economic success of
 service robotic applications

Goal:
● reduce risks and costs of software development for

advanced service robotic systems in order to make a step
ahead towards economically feasible service robotic
applications

● allow for re-use of software components
● plan ability of software components

Software Concepts for Service Robots:
Motivation and goals of research/development efforts

21.08.2012 Talk Schlegel @ Willow Garage 64 - 85

base navi-
gation

speech ...

System
Integrator

System
Integrator

End User

navi-
gation

Component
Builder

object
recgnition

Component
Builder

Software Concepts for Service Robots:
What we want to have: separation of roles, concerns

21.08.2012 Talk Schlegel @ Willow Garage 65 - 85

Model-Driven Software Development
SmartMARS UML Profiles (PIM, PSM)

excerpts of UML Profile created with Papyrus UML (left PIM, right PSM)

SmartSoft
- MDSD details -

21.08.2012 Talk Schlegel @ Willow Garage 66 - 85

Model-Driven Software Development
Model Transformation + Code Generation

Transformation PIM into PSM Generation Gap Pattern

SmartSoft
- MDSD details -

21.08.2012 Talk Schlegel @ Willow Garage 67 - 85

Model-Driven Software Development
PIM to PSM / SmartTask / isRealtime

Xtend Transformation Rule (M2M):
PIM to PSM model transformation of the SmartTask depending on the attribute “isRealtime”

SmartSoft
- MDSD details -

21.08.2012 Talk Schlegel @ Willow Garage 68 - 85

Model-Driven Software Development
PSM to PSI

Xpand / Xtend Transformation (M2T): PSM to PSI model transformation

SmartSoft
- MDSD details -

21.08.2012 Talk Schlegel @ Willow Garage 69 - 85

“A software component is a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be developed independently and is subject to composition by
third parties.” (Szyperski, 2002).

– explicitly consider reusable pieces of software including notions of independence and late composition
– composition can take place during different stages of the lifecycle of components:

» design phase (design and implementation)
» deployment phase (system integration)
» runtime phase (dynamic wiring of data flow according to situation and context).

– CBSE is based on the explication of all relevant information of a component to make it usable by other
software elements whose authors are not known.

Encapsulation / Composability (Meyer 2000):
– may be used by other software elements (clients),
– may be used by clients without the intervention of the component’s developers,
– includes a specification of all dependencies

(hardware and software platform, versions, other components),
– includes a precise specification of the functionalities it offers,
– is usable on the sole basis of that specification,
– is composable with other components,
– can be integrated into a system quickly and smoothly

Where to start?
CBSE – Component Based SWE

SmartSoft
- approach -

21.08.2012 Talk Schlegel @ Willow Garage 70 - 85

SOA are “the policies, practices, frameworks that enable application functionality to be provided and consumed
as sets of services published at a granularity relevant to the service consumer. Services can be invoked,
published and discovered, and are abstracted away from the implementation using a single, standards-based
form of interface” (Sprott& Wilkes, 2004).

A SOA has to ensure hat services don’t get reduced to the status of interfaces, rather they have an identity of
their own.

With SOA, it is critical to implement processes that ensure that there are at least two different and separate
processes - for providers and consumers (Sprott & Wilkes, 2004).

Where to start?
SOA – Service-Oriented Architecture

Principles of good service design enabled by characteristics of SOA (Sprott & Wilkes, 2004)

SmartSoft
- approach -

21.08.2012 Talk Schlegel @ Willow Garage 71 - 85

Where to start?
MDSD – Model-Driven SW Development

 make software development more domain related as opposed to computing related
 it is also about making software development in a certain domain more efficient and more robust due to

design abstraction
 Analysis / requirements models are non-computational, MDSD models are computational
 MDSD models are no „paperwork“, they are the solution which is translated into code automatically

SmartSoft
- approach -

21.08.2012 Talk Schlegel @ Willow Garage 72 - 85

The SmartSoft Component Model
Stable Interfaces

SmartSoft
- approach -

21.08.2012 Talk Schlegel @ Willow Garage 73 - 85

The SmartSoft Component Model
Stable Interfaces

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 74 - 85

The SmartSoft Component Model
Stable Interfaces

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 75 - 85

SmartSoft Component Model
Stable Interfaces

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 76 - 85

SmartSoft
Technical Details

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 77 - 85

SmartSoft
Technical Details

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 78 - 85

SmartSoft
Technical Details

Query: client side state automaton (per request)

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 79 - 85

SmartSoft
Technical Details

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 80 - 85

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 81 - 85

Model Driven Software Development
Glueing User Code / Legacy Code

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 82 - 85

Resource Awareness and Quality of Service
- Example: Schedulability Analysis (CHEDDAR)

Model-Driven Software Development
System-Integrator View / Deployment

System Level Properties / Bindings / Conformance Checks

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 83 - 85

Illustration of the Development Process

– Implemented as UML 2.0-Profile for Robotics Software Components

– supports Component Development, System Integration, Deployment

– based on standards: UML 2.0, Papyrus, Eclipe Modeling Project, etc.

– different Runtime-Platforms, Middleware-Systems etc.

Model-Driven Software Development
SmartMDSD

2-step transformation workflow (framework builder view)

SmartSoft
- details -

21.08.2012 Talk Schlegel @ Willow Garage 84 - 85

Run-Time: Managing Execution Variants
The SmartTCL Meta-Model

 Lisp code (with restrictions):
 actions should not invoke

blocking calls that take a long
time relative to the reactivity
which is expected from
SmartTCL

 SmartTCL specific function:
- tcl-param, tcl-state
- tcl-wiring, tcl-query
- tcl-activate-event
- tcl-delete-event
- ...

defines the
action-plot

Part VII

SmartTCL

21.08.2012 Talk Schlegel @ Willow Garage 85 - 85

Run-Time: Managing Execution Variants
The SmartTCL Meta-Model

defines the hull

defines the
action-plot

Actions are encapsulated by
a hull:

 TCB
 EventHandler
 Rule

 Lisp code (with restrictions):
 actions should not invoke

blocking calls that take a long
time relative to the reactivity
which is expected from
SmartTCL

 SmartTCL specific function:
- tcl-param, tcl-state
- tcl-wiring, tcl-query
- tcl-activate-event
- tcl-delete-event
- ...

Part VII

SmartTCL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Current situation / state of the art
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Handling of intellectual property rights
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Motivation and goals of the research and development efforts
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

