
22.10.2011 GPCE 2011, Portland, OR / Schlegel

Servicerobotik
Autonome mobile Serviceroboter

Model-Driven Engineering and Run-Time
Model-Usage in Service Robotics

Andreas Steck (M.Sc.),

Alex Lotz (M.Sc.),

Prof. Dr. Christian Schlegel

Institut für Informatik

Hochschule Ulm

http://www.hs-ulm.de/schlegel

http://www.zafh-servicerobotik.de/ULM/index.php

http://smart-robotics.sf.net/

http://www.youtube.com/user/roboticsathsulm

http://www.hs-ulm.de/schlegel
http://www.zafh-servicerobotik.de/ULM/index.php
http://smart-robotics.sf.net/
http://www.youtube.com/user/roboticsathsulm

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Servicerobotik
Autonomous mobile Service Robots

Part I

22.10.2011 GPCE 2011, Portland, OR / Schlegel

What is the Challenge in Robotics?

● The current situation in software for robotics can be
compared with the early times of the World Wide Web
where one had to be a computer engineer to setup
web pages.

● The World Wide Web turned into a universal medium
only since the availability of tools

● which have made it accessible to everyone
● which allow domain experts (like journalists) to

provide content without bothering with technical
details

● which ensure sustainability / availability of
contents independently of preferred operating
systems, browsers etc.

=> separation of roles and separation of concerns
=> this is a universal approach towards successfully handling complexity:
 applications, markets, sharing efforts / risks

Part I

22.10.2011 GPCE 2011, Portland, OR / Schlegel

What is the Challenge in Robotics?

● Current situation:
● no “Separation of Roles“

● end users
● system integrators
● component developers
● framework developers

● no “Separation of Concerns“
● computation
● communication
● configuration

(parameters at component / system level)
● coordination

(orchestration, ressource management)

Part I

Robotics so far circumvented the problem of a missing
abstraction by not separating between the roles of the
component builder and the system integrator.

As long as both roles are carried out by the same persons,
explicit descriptions which allow black-box reuse of existing
solutions are not considered as essential.

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Separation of Roles
Separation of Concerns

The Big-Bang Theory:
Howard unpacking food with robot

http://youtu.be/bKT13zcX_3U

Part I

http://youtu.be/bKT13zcX_3U

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Separation of Roles
Separation of Concerns

Part I

„freedom from choice“
in order to ensure

system-level conformity

navi-
gation

Component
Builder

object
recgnition

Component
Builder

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Separation of Roles
Separation of Concerns

base navi-
gatio

n

speech ...

Part I

navi-
gation

Component
Builder

object
recgnition

Component
Builder

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Separation of Roles
Separation of Concerns

base navi-
gatio

n

speech ...

System
Integrator

System
Integrator

Part I

make system-level bindings
and adjustments

black-box view

navi-
gation

Component
Builder

object
recgnition

Component
Builder

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Separation of Roles
Separation of Concerns

base navi-
gatio

n

speech ...

System
Integrator

System
Integrator

End User

Part I

navi-
gation

Component
Builder

object
recgnition

Component
Builder

22.10.2011 GPCE 2011, Portland, OR / Schlegel

What is Different in Robotics?

● The difference of robotics compared to other disciplines (e.g. automotive, avionics) is
neither the huge variety of different sensors, actuators, hardware platforms
nor the number of different disciplines being involved.

● We are convinced that differences of robotics compared to other domains originate
from the need of a robot to cope with open-ended environments
while having only limited resources at its disposal.

=> The best matching between current situation, proper robot behavior and
 ressource assignment becomes overwhelming even for the most skilled robot
 engineer!

Part I

22.10.2011 GPCE 2011, Portland, OR / Schlegel

What is Different in Robotics?

● The difference of robotics compared to other disciplines (e.g. automotive, avionics) is
neither the huge variety of different sensors, actuators, hardware platforms
nor the number of different disciplines being involved.

● We are convinced that differences of robotics compared to other domains originate
from the need of a robot to cope with open-ended environments
while having only limited resources at its disposal.

● Limited resources require decisions: when to assign which resources to what activity
taking into account perceived situation, current context and tasks to be fulfilled.

● Due to open-ended real-world environments, it is impossible to statically assign
resources in advance in such a way that all potential situations arising at runtime are
properly covered.

● Due to the enormeous sizes of the problem space and the solution space in robotics,
there will always be a deviation between design-time and run-time optimality.

● Therefore, there is a need for dynamic resource assignments at runtime: managing
variants / variability at runtime by late bindings of purposefully left-open variation
points (models@runtime, accessible via MDSD + DSLs)

● future automotive systems face the very same challenges ...

Part I

mailto:models@runtime

22.10.2011 GPCE 2011, Portland, OR / Schlegel

From code-driven to model-driven engineering in robotics
in order to achieve:

– separation of roles
– separation of concerns
– managing run-time decisions

Contributions / Focus of work:
– make the step from code-driven to model-driven development of robotic systems by

providing a robotics meta-model for robotic software components,
– providing levels of abstraction which allow to transform the models and generate

code out of them,
– using the models of the robotics software components at design-time for simulation

and analysis purposes, for example, real-time schedulability analysis of the real-time
tasks,

– bridging between design-time models of robotics software components and their run-
time representation,

– using models at run-time to support the decision making process of the robotic
system by binding at run-time variation-points that have been left-open purposefully
at design-time

Model Pool
different views/
representations
of the models

Design-Time Run-Time

Developer Robot

The Big Picture …
 … Design-time / Run-time Model Usage

Part II

22.10.2011 GPCE 2011, Portland, OR / Schlegel

The Big Picture …
 … Design-time / Run-time Model Usage

Part II

 use models for the entire life-cyle of the robot
 models are refined step-by-step until finally they become executable
 variation points: design-time (component builder, system integrator), runtime (robot)

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model Pool
different views/
representations
of the models

Reason on the Models

SmartMDSD Toolchain,
Blender, Solid Works,
World / Map Editor,
Ontosaurus, ...

Create/ Modify Models

Analysis, Simulation, Planning, ...

Manipulate models at run-time

Reflect current state of the
world and robot in the models

Make decisions at run-time
depending on the models

CHEDDAR, OpenRAVE, Gazebo, Metric-FF, LAMA, ...

Developer

Modify Models

Robot

Design-Time Run-Time

The Big Picture ...
… Model-Centric Robotic Systems

Part II

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Where to Start?

 CBSE (Component Based Software Development)
 SOA (Service-Oriented Architecture)
 MDSD (Model-Driven Software Development)

Part II

 Separating the roles of the component builder, system integrator and the robot requires to identify, specify and
explicate stable structures as well as variation points each role can rely on.

 These stable structures and variation points build the ground for a model-based representation. Representing
the structure of the component as meta-model enforces compliance of components with the meta-model via a
MDSD-toolchain.

 We identified the component hull as the key structure to address the above challenges.

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Part IIThe SmartSoft Component Model
Stable Interfaces

send one-way communication
query two-way request/response
push newest 1-to-n distribution
push timed 1-to-n distribution
event asynchronous conditioned notification

The SmartSoft Communication Patterns
component configuration

state activate/deactivate component services
wiring dynamic component wiring
diagnose introspection of components

(internally based on communication patterns)

The SmartSoft Services
param

- Services are defined by a Communication Pattern and Communication Objects
- Communication Objects are communicated between components: platform-independent, by-value
- Services are offered / used by components via Ports

22.10.2011 GPCE 2011, Portland, OR / Schlegel

The SmartSoft Component Model
Excerpt of the SmartMARS Meta-Model

Part II

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Illustration of the Development Process
 Implemented as UML 2.0-Profile for Robotics Software Components
 supports Component Development, System Integration, Deployment
 based on standards: UML 2.0, Papyrus, Eclipe Modeling Project, etc.
 different Runtime-Platforms, Middleware-Systems etc.

Model-Driven Software Development
SmartMDSD

2-step transformation workflow (framework builder view)

Part II

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-Driven Software Development
Component Builder View

Part II

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-Driven Software Development
Component Builder View

Screencast „Build a Component Hull“

Part II

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model Driven Software Development
System Integrator View

Part II

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Component Shelf
Reusable Components

System Integration

base navi-
gation

speech ...

System Level Properties / Bindings / Conformance Checks

Part IIModel-Driven Software Development
System Integrator View

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-Driven Software Development
SmartMARS UML Profiles (PIM, PSM)

excerpts of UML Profile created with Papyrus UML (left PIM, right PSM)

Part III

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-Driven Software Development
Model Transformation + Code Generation

Transformation PIM into PSM Generation Gap Pattern

Part III

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-Driven Software Development
PIM to PSM / SmartTask / isRealtime

Xtend Transformation Rule (M2M):
PIM to PSM model transformation of the SmartTask depending on the attribute “isRealtime”

Part III

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-Driven Software Development
PSM to PSI

Xpand / Xtend Transformation (M2T): PSM to PSI model transformation

Part III

22.10.2011 GPCE 2011, Portland, OR / Schlegel

What do we need in Robotics?
Part IV

● Support for instances of components in tools:
● including dedicated parametrization per instance
● not adequately supported by UML and its extension mechanism (UML Profiles)
● use case:

● laser ranger component is used for front / rear laser ranger but with different bindings

● Variation Points: Support for different roles in tools / models:
● each role (component builder, system integrator, robot) should have different access policies
● use cases:

● component builder binds a value that must not be changed by others
● component builder specifies a range / set of values to define the decision space for other roles

and defines which role is allowed to change / must bind the variation point

● Variation Points: Mechanisms to express relations between model elements and their parameters:
● use cases:

● modifying property „cycle time“ of navigation component directly changes property „maximum
allowed velocity“ (is needed to allow for modifications of parameters without having to know
about their internal functional relationship)

● Variation Points: Support for bindung / unbinding of model parameters:
● modifying a specific parameter in the model may induce that depending parameters get unbound

and have to be bound with respect to the new configuration
● use case:

● changing the processor type invalidates all hard real-time WCET

22.10.2011 GPCE 2011, Portland, OR / Schlegel

What do we need in Robotics?
Part IV

● OMG MDA far too restrictive with respect to the workflow:

● we want to make bindings at any place of the model at any time until finally there are enough
bindings to become

● (partially) executable by co-simulation
● usable by the robot

● we want to be assisted with respect to consistency etc. but we do not want to be restricted by a
narrow and strictly ordered set of steps as within MDA

(see e.g. platform specific information: parts need to be added early and other parts might be post-
poned for late bindings)

Stepwise Refinement

?

22.10.2011 GPCE 2011, Portland, OR / Schlegel

• a „Red Bull“ can be put into „Potato Sticks“
• cups can be stacked into each other

Part V

Scenario: Robot “Kate” cleans up a table
Model-based Runtime Decisions

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Scenario: Robot “Kate” cleans up a table
Model-based Runtime Decisions

Part V

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Scenario: Robot “Kate” cleans up a table
System Integration / Deployment

Part V

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Part V
Model-based Runtime Decisions

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-based Runtime Decisions
Sequencer Orchestrates the Components

 bridges between continuous processing and event-driven task execution

 the sequencer orchestrates the software components in the system:
● send parameters / configurations
● switch components on/off to manage resources
● change the wiring between the components
● query information / wait for events

SmartSoft
components

continuous

processing

event-driven

task execution

Part V

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-based Runtime Decisions
Sequencer: SmartTCL Task-Tree

(a)

(c)

?

(b)

(a) select between alternatives
 at runtime
 (b) handle contingencies
 (c) delete, add or replace parts
 of the task-tree at runtime

 at runtime a task-tree is dynamically
created, modified and executed

 composes reusable action-plots to
complex behaviors

 manages execution variants and
contingencies of real world
environments

 provides context and situation-driven
task execution

 mediates between symbolic and
subsymbolic mechanisms of
information processing

Part V

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Model-based Runtime Decisions
Calling a Symbolic Planner

symbolic planner

grasp
cup-1

stack-into
cup-3

grasp
cup-2

stack-into
cup-3

grasp
cup-3

transport
pose

transform plan steps into
SmartTCL Task Coordination

Blocks (TCBs)

reusable TCBs

add TCBs to
task-tree

the knowledge how to
transform the plan steps into
TCBs is encoded in the
action plot of the stack TCB

cleanup

recognize
objects stack

cleanup

recognize
objects stack

(grasp cup1)
(stack cup1 cup3)
(grasp cup2)
(stack cup2 cup3)
(grasp cup3)
(transport)

transform knowledge
about recognized
objects into PDDL

generate plan
(metric-ff)

Part V

22.10.2011 GPCE 2011, Portland, OR / Schlegel

http://www.youtube.com/user/roboticsathsulm

Part VScenario: Robot “Kate” cleans up a table
Model-based Runtime Decisions

Watch Video on YouTube
http://www.youtube.com/roboticsathsulm

http://www.youtube.com/user/roboticsathsulm

22.10.2011 GPCE 2011, Portland, OR / Schlegel

SmartSoft MDSD Toolchain
Links

http://smart-robotics.sourceforge.net/

http://www.youtube.com/roboticsAtHsUlm

Ready to run VMWare image

http://www.youtube.com/roboticsAtHsUlm

ROS-Gateway / Care-O-Bot Demo

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Addendum

22.10.2011 GPCE 2011, Portland, OR / Schlegel

“A software component is a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be developed independently and is subject to
composition by third parties.” (Szyperski, 2002).

– explicitly consider reusable pieces of software including notions of independence and late
composition

– composition can take place during different stages of the lifecycle of components:
» design phase (design and implementation)
» deployment phase (system integration)
» runtime phase (dynamic wiring of data flow according to situation and context).

– CBSE is based on the explication of all relevant information of a component to make it
usable by other software elements whose authors are not known.

Encapsulation / Composability (Meyer 2000):
– may be used by other software elements (clients),
– may be used by clients without the intervention of the component’s developers,
– includes a specification of all dependencies

(hardware and software platform, versions, other components),
– includes a precise specification of the functionalities it offers,
– is usable on the sole basis of that specification,
– is composable with other components,
– can be integrated into a system quickly and smoothly

Where to start?
CBSE – Component Based SWE

22.10.2011 GPCE 2011, Portland, OR / Schlegel

SOA are “the policies, practices, frameworks that enable application functionality to be provided and
consumed as sets of services published at a granularity relevant to the service consumer. Services
can be invoked, published and discovered, and are abstracted away from the implementation using
a single, standards-based form of interface” (Sprott& Wilkes, 2004).

A SOA has to ensure hat services don’t get reduced to the status of interfaces, rather they have an
identity of their own.

With SOA, it is critical to implement processes that ensure that there are at least two different and
separate processes - for providers and consumers (Sprott & Wilkes, 2004).

Where to start?
SOA – Service-Oriented Architecture

Principles of good service design enabled by characteristics of SOA (Sprott & Wilkes, 2004)

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Where to start?
MDSD – Model-Driven SW Development

 make software development more domain related as opposed to computing related
 it is also about making software development in a certain domain more efficient and more robust due to

design abstraction
 Analysis / requirements models are non-computational, MDSD models are computational
 MDSD models are no „paperwork“, they are the solution which is translated into code automatically

22.10.2011 GPCE 2011, Portland, OR / Schlegel

The SmartSoft Component Model
Stable Interfaces

22.10.2011 GPCE 2011, Portland, OR / Schlegel

The SmartSoft Component Model
Stable Interfaces

22.10.2011 GPCE 2011, Portland, OR / Schlegel

SmartSoft Component Model
Stable Interfaces

22.10.2011 GPCE 2011, Portland, OR / Schlegel

SmartSoft
Technical Details

22.10.2011 GPCE 2011, Portland, OR / Schlegel

SmartSoft
Technical Details

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Run-Time: Managing Execution Variants
The SmartTCL Meta-Model

defines the hull

defines the
action-plot

Actions are encapsulated by
a hull:

 TCB
 EventHandler
 Rule

 Lisp code (with restrictions):
 actions should not invoke

blocking calls that take a long
time relative to the reactivity
which is expected from
SmartTCL

 SmartTCL specific function:
- tcl-param, tcl-state
- tcl-wiring, tcl-query
- tcl-activate-event
- tcl-delete-event
- ...

Part VII

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Run-Time: Managing Execution Variants
TCB Programming

defines the hull

defines the action-plot

The Hull provides a stable structure that allows a black-box view on
the action-plots and thus ensures reusability and composability → Seperation of Roles

To programm the Action-Plots the developers are free, for example, to do calculations,
query for information from components or the KB.

Part VII

22.10.2011 GPCE 2011, Portland, OR / Schlegel

Run-Time: Managing Execution Variants
TCB Selection at Run-Time

Knowledge Base
TCBs

rules

event-handler

Model of Components

Model of World
Rooms, Locations,
Objects, Persons, ...

. . .

?

unification

active TCBs

not yet bound TCBs

select between alternatives

Part VII

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

