
3 May 2010 ICRA 2010 Workshop / Schlegel

Design-Abstraction and Processes:
Examples and Experiences of
 Academia-Industry Collaboration

Prof. Dr. Christian Schlegel

Computer Science Department
University of Applied Sciences Ulm

http://www.zafh-servicerobotik.de/ULM/index.php
http://www.hs-ulm.de/schlegel
http://smart-robotics.sourceforge.net/

3 May 2010 ICRA 2010 Workshop / Schlegel

 a two-way street where
- both stakeholders play different roles
- there is a third player: government / public funding
- all bring in talent, resources, differentiated perspectives
- overall aim: create a robust whole in addressing problems / projects

 challenges: different interests due to different roles, e.g.
- commercialization versus public access (IPR)
- producer (academia) / consumer (industry) relationship ?
- market pull ? application driven ? technology driven ?
- market driven research versus pre-competitive research ?
- academia or industry in the driver's seat ?
- ...

Academia-Industry Collaboration

3 May 2010 ICRA 2010 Workshop / Schlegel

 robotics
- is a cross-cutting discipline / interdisciplinary challenge

 experience
- it is far too easy to say “details can be worked out”
- it often is comfortable to focus on one aspect in isolation

 interdisciplinary / integrational challenges are often neglected
- system architectures, system engineering tools
- safety, security, diagnostics and monitoring
- resource awareness, quality of service
➔ system engineering is challenging for industry and academia
➔ industry has experience, academia extends methods
➔ it requires industrial expertise and offers scientific challenges
➔ often perceived as “doing” or “just implementation” but that is wrong
➔ ignoring system level challenges looks like a gap between industrial needs

and academic offerings

Academia-Industry Collaboration

3 May 2010 ICRA 2010 Workshop / Schlegel

A development process often applied in robotics ...

Approach: Design Abstraction

3 May 2010 ICRA 2010 Workshop / Schlegel

Systematic engineering processes look different ...
... also in case of software intensive systems

Approach: Design Abstraction

3 May 2010 ICRA 2010 Workshop / Schlegel

We need a systematic engineering approach for robotics software!

 robots are complex systems that depend on systematic engineering
 so far fundamental properties of robotic systems have not been made detailed

enough nor explicit (e.g. QoS)
 tremendous code-bases (libraries, middleware, etc.) coexist without any

chance of interoperability and each tool has attributes that favors its use

 rely, as for every engineering endeavour, on the power of models
 nowadays, robotics functionality is foremost based on software
 make the step towards MDSD

etc.

Approach: Design Abstraction

3 May 2010 ICRA 2010 Workshop / Schlegel

Approach: Design Abstraction

- separation of robotics knowledge from
short-cycled implementational
technologies

- providing sophisticated and optimized
software structures to robotics developers
not requiring them to become a software
expert

how to achieve this?
- make the step from code-driven to model-

driven designs
- since recently, there are matured open

source tools, etc. available that can be
applied in / tailored to robotics!

http://www.willowgarage.com/blog

3 May 2010 ICRA 2010 Workshop / Schlegel

Approach: Design Abstraction

3 May 2010 ICRA 2010 Workshop / Schlegel

What is different in robotics?
 not the huge number of different sensors and actuators
 not the various hardware platforms
 not real-time requirements etc.

but
 the context and situation dependant reconfiguration of

interactions
 a prioritized assignment of restricted resources to activities

again depending on context and situation
 the tremendous complexity of design space / solution space
 deviations between design-time and run-time optimality

 analysis / requirements models are non-computational,
MDSD models are computational

 MDSD models are no “paperwork”, they are the
solution which is translated into code automatically

Approach: Design Abstraction

Domain Concepts

Software Technology
 Concepts

mental work of
developers

Modeling

Domain Concepts

Software Technology
Concepts

so far

new

3 May 2010 ICRA 2010 Workshop / Schlegel

 ZAFH Servicerobotics
 http://www.zafh-servicerobotik.de/
 collaborative center for applied research on service robotics

Example 1:
Collaborative Center for Applied Research

2008-2010 / 1.5 M€
(optional: 2011-2012 / 1 M€)
Universities of Applied Sciences
 Ulm
 Ravensburg-Weingarten
 Mannheim

 adaptive intelligent control
 verification of safety properties
 software technology
 localization / mapping
 information-optimized object recognition
 adaptive real-time image processing

http://www.zafh-servicerobotik.de/

3 May 2010 ICRA 2010 Workshop / Schlegel

 ZAFH Servicerobotics
- further strengthening collaboration of

– universities of applied sciences with
– SMEs

- in particular, SMEs should take the opportunity of improving their
competitiveness by applying research results

 no funding of industry / SMEs in this program
- Landesstiftung Baden-Württemberg

(foundation to support projects of general public benefit linked by the
common aim of securing the future capabilities of the State of Baden-
Württemberg)

- co-funded by EFRE (European Regional Development Fund)

Example 1:
Collaborative Center for Applied Research

3 May 2010 ICRA 2010 Workshop / Schlegel

 Expectations
- sustainability of efforts
- do not start from scratch again and again
- composition out of building blocks
- allow to focus on USPs

 Meta-Models and Models as means to interact with
industry

- collaborate at system level, interfaces, design
methodologies, reference / prototype
implementations of tools / components based
on Meta-Models and Models (open access)

- compete at the level of implementations
(refinements of models), underneath
algorithms, tailored tools (proprietary)

Example 1:
Collaborative Center for Applied Research

3 May 2010 ICRA 2010 Workshop / Schlegel

Example 2:
Bilateral Academia-Industry Collaboration
Software development is too complex and too expensive because:

 there is too little reuse
 technology changes faster than developers can learn
 knowledge and practices are hardly captured explicitly and made available for reuse
 domain experts cannot understand all the technology stuff involved in software

development
Overall aim:

 get rid of hand-crafted single unit service robot systems
 compose them out of standard components with explicitly stated properties
 be able to reuse / modify solutions expressed at a model level
 take advantage from the knowledge of software engineers that is encoded in the

code transformators
 be able to verify properties (or at least provide conformance checks)

Lessons learned:
 again, Meta-Models and Models as means to interact and share knowledge between

industry and academia without requiring to use the same implementations while still
sharing the same overall system architectures etc.!

3 May 2010 ICRA 2010 Workshop / Schlegel

 they know about their domain and they are unmatched experts in their domain
 need to make the next step of automation of their products in their domain

- next step of automation is being expected as evolution
- they do not want to become a robotics expert
- however, this step often is a revolution

– high risks
– not clear when additional sensors etc. pay off due to multi-use

 Example: Dung Removal Systems
- jump onto a design process which allows to compose robotics components from

third-parties and just provide (even sell) those specialized components to others
that comprise special domain / application know-how

- again, basis for this is a model-based software development process

Example 3: SME

<just arbitrary examples of dung removal systems / not the ones we are involved in>

3 May 2010 ICRA 2010 Workshop / Schlegel

 provide engineering methodology for robotics
- bridging the gap between academia & industry
- decouple system knowledge from implementational technologies

 provide the ground for processes for the overall lifecycle
- development
- simulation
- testing
- deployment
- maintenance

 collaborate at the meta-models, transformations etc. and compete at their
implementation

 provide freedom to choose whatever implementational technology is most adequate in
target domain

 provides the ground for a component market: models, interoperability, services
[in particular, SMEs: value-adding expertise can be made available by custom-models]

Design Abstraction and Processes

3 May 2010 ICRA 2010 Workshop / Schlegel

 Design Abstraction
- integration / system engineering as science
- interdisciplinary collaboration
- training and education, workshops, summer schools

 SMEs
- simpler involvement
- small bilateral projects attached to large scale projects
- roof under which even bilateral and short running activities are possible

 Robotics Test Sites
- equipped with state-of-the-art robotic systems and equipment
- maintained by technicians and operators
- simulators / remote access for experiment preparation
- places to collaborate and exchange components
- accessible by different stakeholders

 in general
- depreciation problem
- sustainability after project duration (maintenance, expandable repositories)

 shared design methodology / open reference implementations
- competition at the level of tools, models etc.

Design Abstraction and Processes

3 May 2010 ICRA 2010 Workshop / Schlegel

Addendum

3 May 2010 ICRA 2010 Workshop / Schlegel

How MDSD works

 Developer develops model(s)
based on certain metamodel(s),
expressed using a DSL

 Using code generation templates,
the model is transformed to
executable code

- alternative: interpretation
 Optionally, the generated code is

merged with manually written code
 One or more model-to-model

transformation steps may precede
code generation

Model Driven Software Development
Introduction and Motivation

http://www.voelter.de/services/mdsd.html

Metamodel

Transformer

Model

Transformer

Generated
Code

Model
Model

Model

Metamodel

Code
Generation
Templates

Transformation
Rules

Manually
written
code

op
ti o

na
l,

ca
n

be
 re

p e
at

ed
op

tio
na

l

3 May 2010 ICRA 2010 Workshop / Schlegel

Model Driven Software Development
SmartMDSD

Benefits of this development process:

 systematically handle integration of systems of the complexity of service
robots and to overcome plumbing

 tools like OpenArchitectureWare, Eclipse etc. are matured enough to be
used in robotics

 there are many experienced people out there being already familiar with
the tools, can start immediately using them and can just focus on robotics

 design patterns, best practices, approved solutions can be made available
within the code generators such that even novices can immediately take
advantage from that coded and immense experience

 SmartSoft provides the perfect granularity for system design, component
development, composability, freedom within components, tool support etc.

3 May 2010 ICRA 2010 Workshop / Schlegel

Illustration of our development process
 UML 2.0 profile for robotics component model
 covers component development, system composition, deployment
 based on standards: UML 2.0, Open Architecture Ware, Eclipse, etc.
 different runtime platforms, middleware systems etc.

Model Driven Software Development
SmartMDSD

3 May 2010 ICRA 2010 Workshop / Schlegel

Model Driven Software Development
SmartMDSD

PIM

SmartMARS – Metamodel

(Modeling and Analysis of
 Robotics Systems)

 UML2-Profile

 platform independent
 stereotypes

• SmartComponent
• SmartTask
• SmartMutex
• SmartQueryServer
• SmartEventClient
• ...

PSM

CorbaSmartSoft
CORBA based implementation
of SmartSoft

PSI

has to be created by a
middleware expert

 UML2-Profile
 platform specific stereotypes

AceSmartSoft
ACE based implementation
of SmartSoft

M2T
oAW

xPand
check

The user space can contain
arbitrary code and libraries

The user space remains the
same independent of the
different platform specific models

Just the component hull will be
created

...
any other middleware

M2M
oAW

xTend
check

3 May 2010 ICRA 2010 Workshop / Schlegel

Model Driven Software Development
Examples etc.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

