

servicerobotik Autonome Mobile Serviceroboter

Bearing-Only SLAM in everyday environments using Omnidirectional Vision

Siegfried Hochdorfer, Matthias Lutz and Christian Schlegel

Department of Computer Science University of Applied Sciences Ulm, Germany

http://www.zafh-servicerobotik.de/ULM/en/index.php

Hochschule Ulm

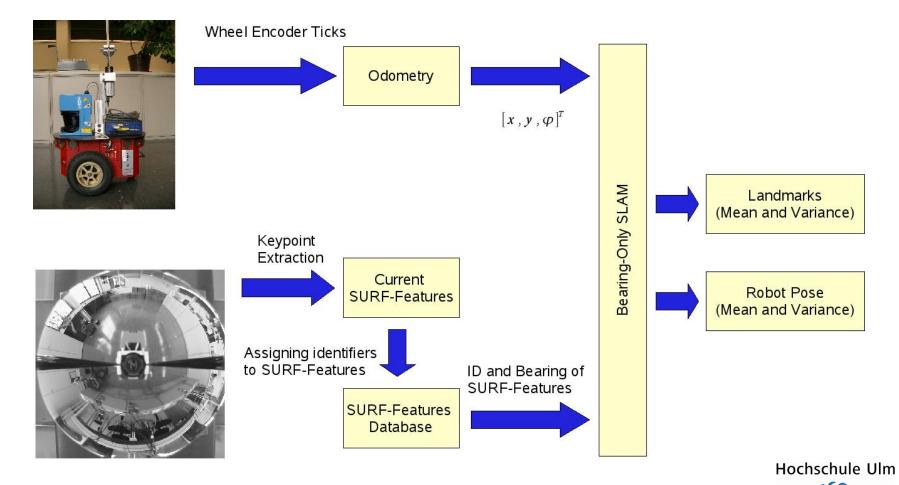
servicerobotik

Autonome Mobile Serviceroboter

Outline

System Overview **Problem Description** Method Robustness in everyday environments Landmark rating and selection Results Real world experiment Conclusions

System Overview



Visual Landmarks

Hochschule Ulm

Visual Landmarks

SURF Features [3] as visual landmarks scale-invariant rotation-invariant high repeatability high distinctiveness high robustness

Hochschule Ulm

servicerobotik Autonome Mobile Serviceroboter

Problem description:

Service robots should be designed for life-long and robust operation in dynamic environments.

 \rightarrow goal 1: robust operation in dynamic everyday environments

 \rightarrow goal 2: life-long operation

Hochschule Ulm

servicerobotik

Autonome Mobile Serviceroboter

Goal 1:

Robustness in dynamic everyday environments

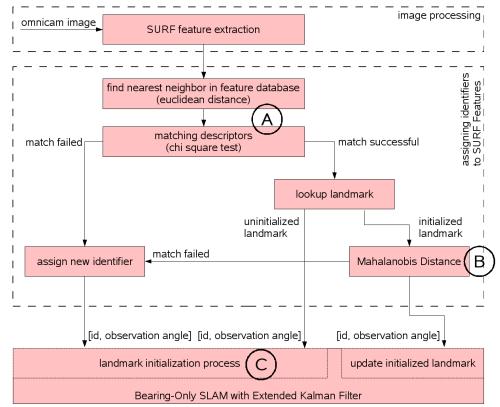
Problem:

Natural landmarks often identified on recurring structures like doors and window frames. How can we distinguish them? \rightarrow landmark assignment problem

Solution:

combine efficient feature retrieval with spatial plausibility

Assigning identifiers to SURF-Features



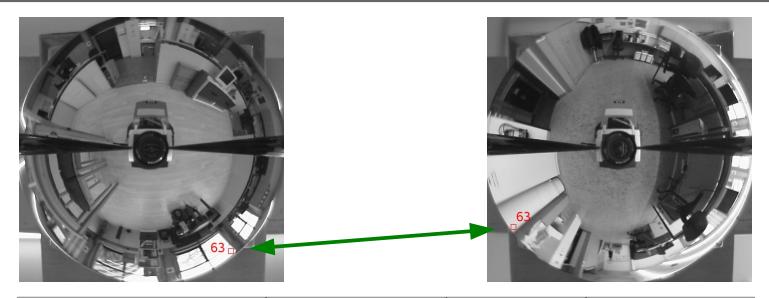
The first step (**A**) in the assignment process is to find the nearest neighbour (Euclidean distance) in the kd-tree. We then compare this descriptor from the database with the descriptor of the observed SURF feature by a chi^2 Test.

For spatial plausibility, initialized landmarks are checked by Mahalanobis distance (**B**).

At the landmark initialization process (**C**) we also check the landmark by a Mahalanobis distance test

All features which are not initialized within 10 timesteps, are deleted from the database. This limits the growing of the feature database.

Example



	Comparison Method	Value	Threshold	Classification
descriptor comparison spatial plausibility test	Lowe	0.15 < 0.6*0.29	d ₁ < 0.6 * d ₂	matching
	Correlation Coefficient	0.9882	> 0.90	matching
	Chi-Square Test	0.079	< 0.15	matching
	Mahalanobis Distance	656.781	< 0.1015	not matching
plaasisinty test				

Hochschule Ulm

servicerobotik

Autonome Mobile Serviceroboter

Goal 2:

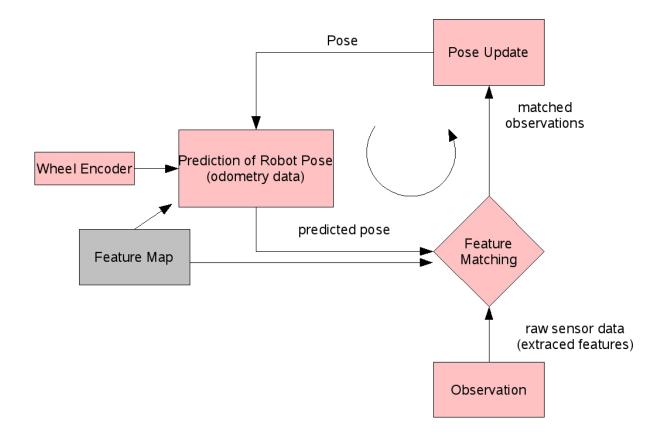
life-long operation

Problem:

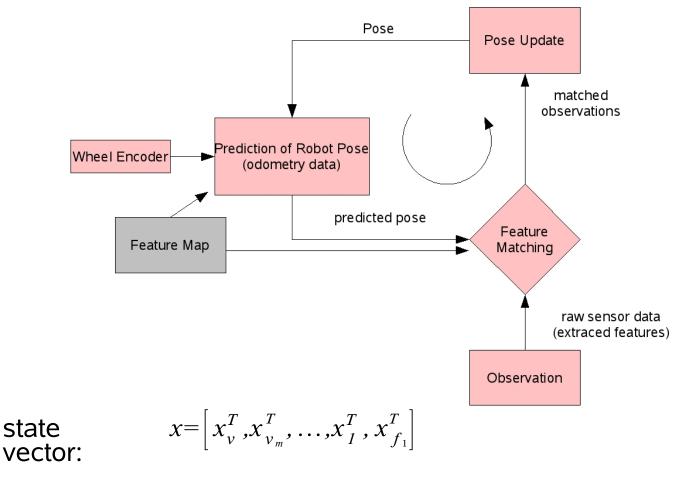
Typically, feature based SLAM approaches just accumulate features over time and do not discard them anymore.Therefore, the required resources in terms of memory and processing power are growing over time.

Solution:

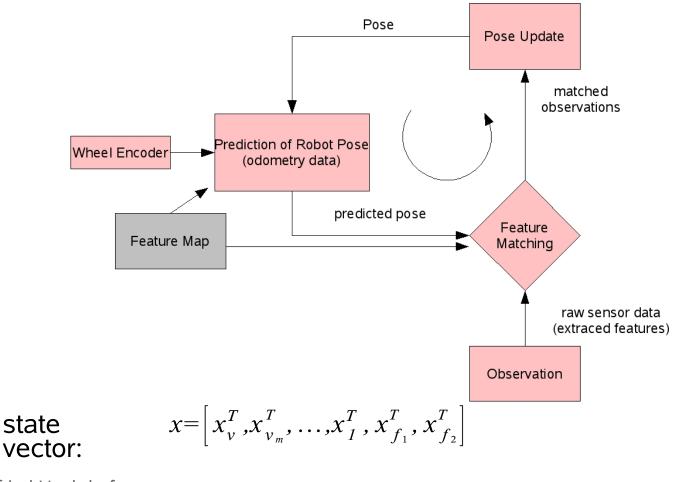
Restrict the absolute number of landmarks by an upper bound. Evaluate landmarks based on their utility for localization purposes which is different from just replacing the most uncertain landmark.



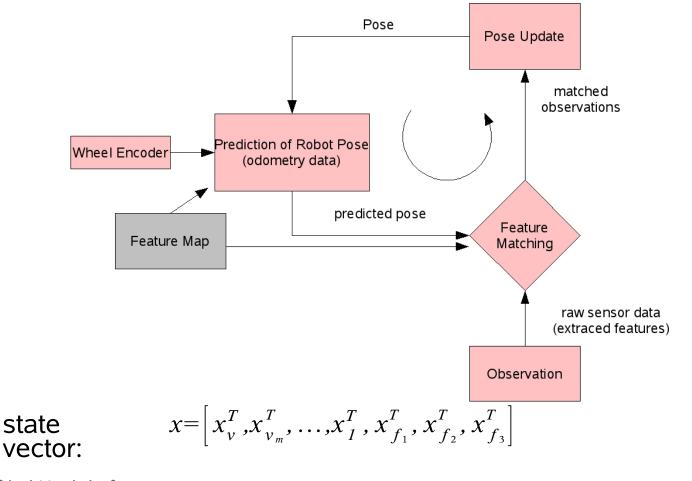
Hochschule Ulm



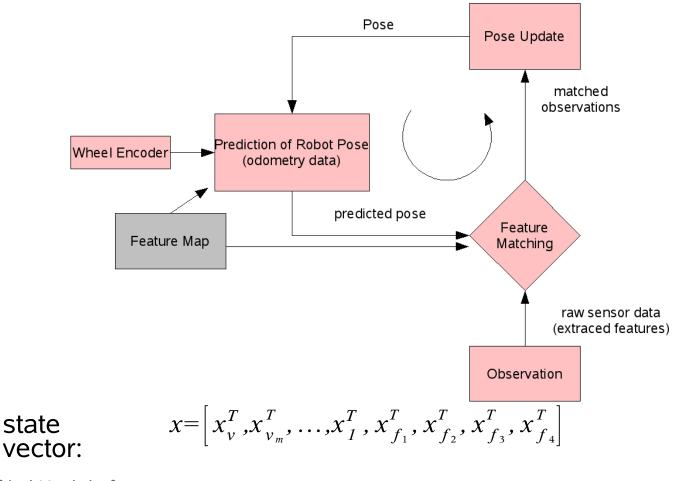
Hochschule Ulm



Hochschule Ulm



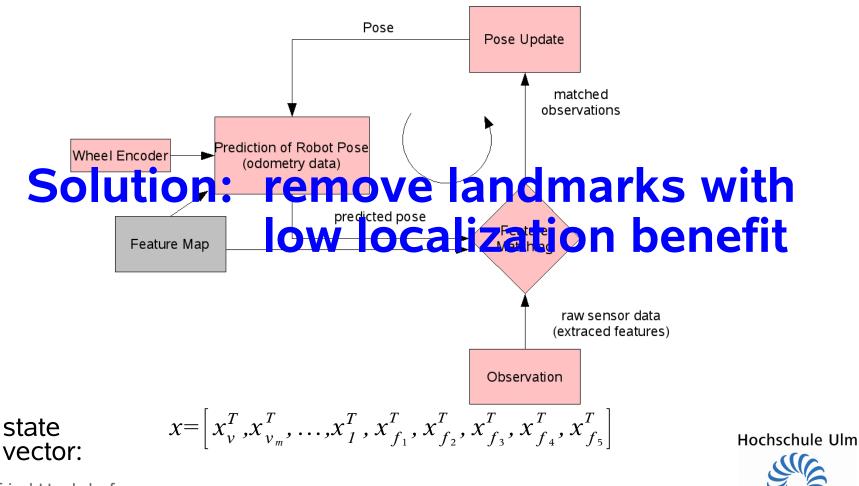
Hochschule Ulm



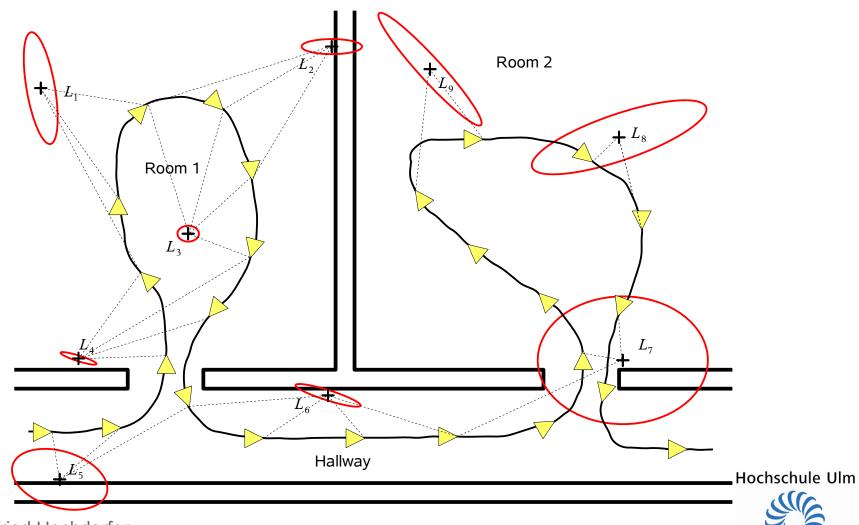
Hochschule Ulm



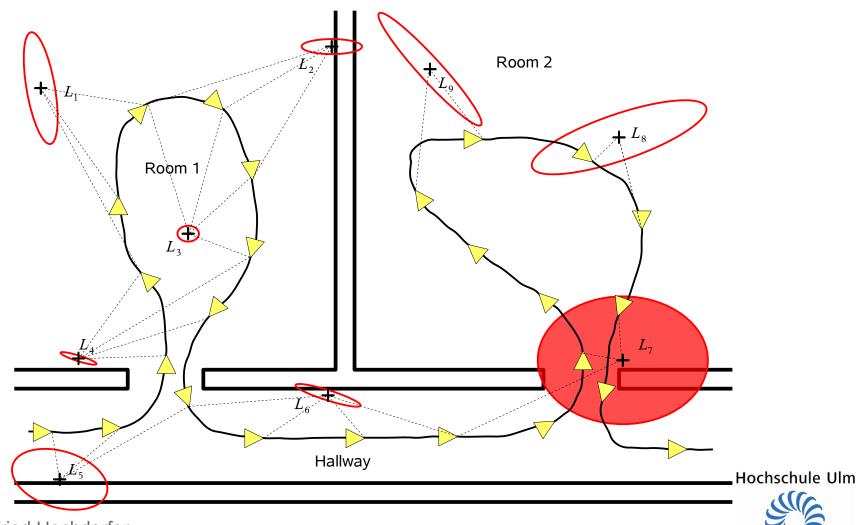
Hochschule Ulm



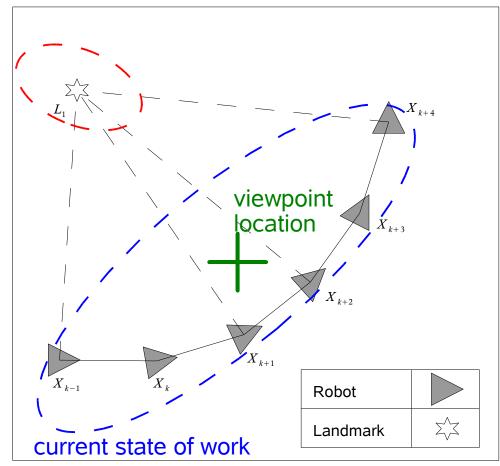
Which Landmark has a low benefit?



Which Landmark has a low benefit?



Landmark rating and selection



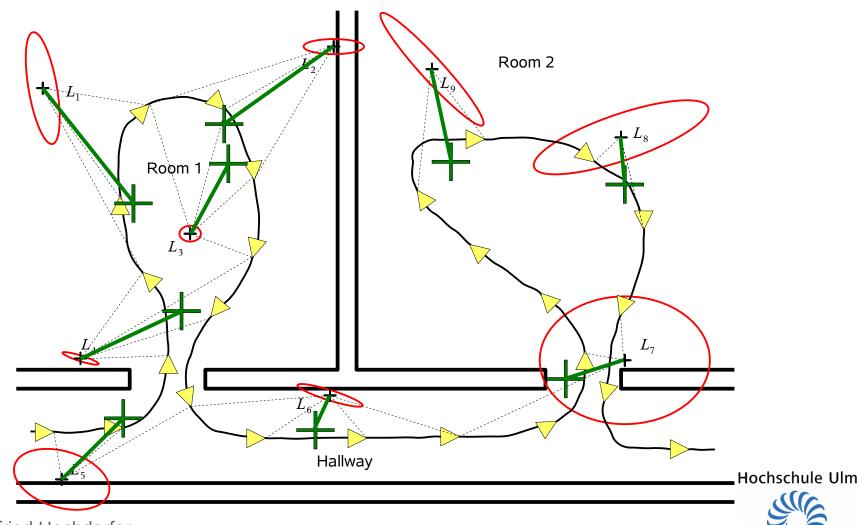
The position of a landmark does not itself give a hint on its usefulness for localizing a robot.

In fact, we require to know the poses from which a landmark can be observed to know in which parts of an environment this landmark can be used for localization purposes.

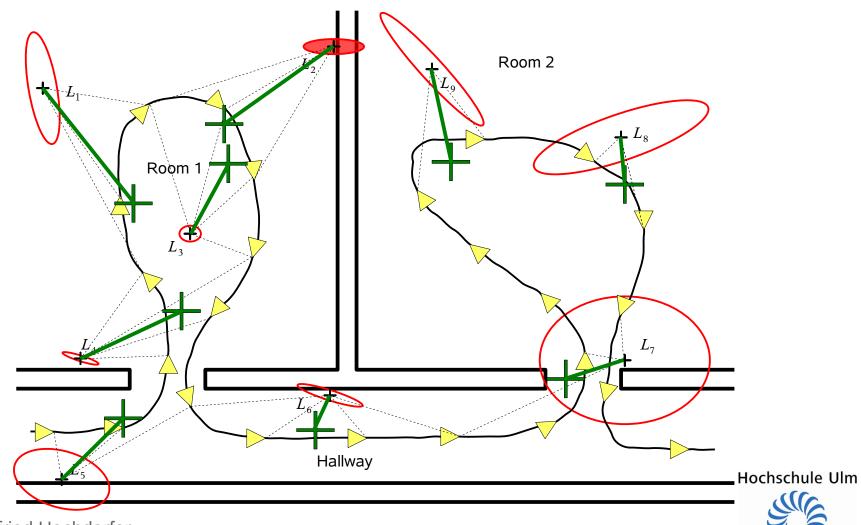
represent the observability region of each landmark by calculating arithmetic mean of the observation poses

Hochschule Ulm

Which Landmark has a low benefit?



Which Landmark has a low benefit?

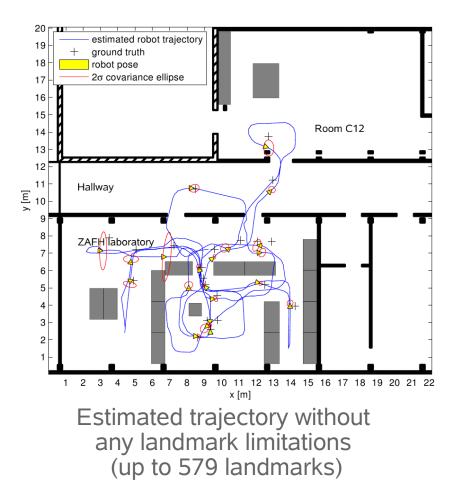


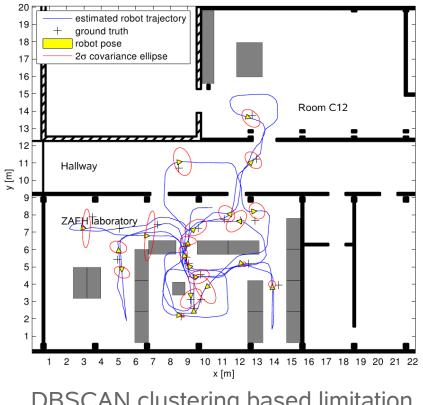
Everyday Indoor Environment

Mobile Robot Pioneer 3DX

Hochschule Ulm

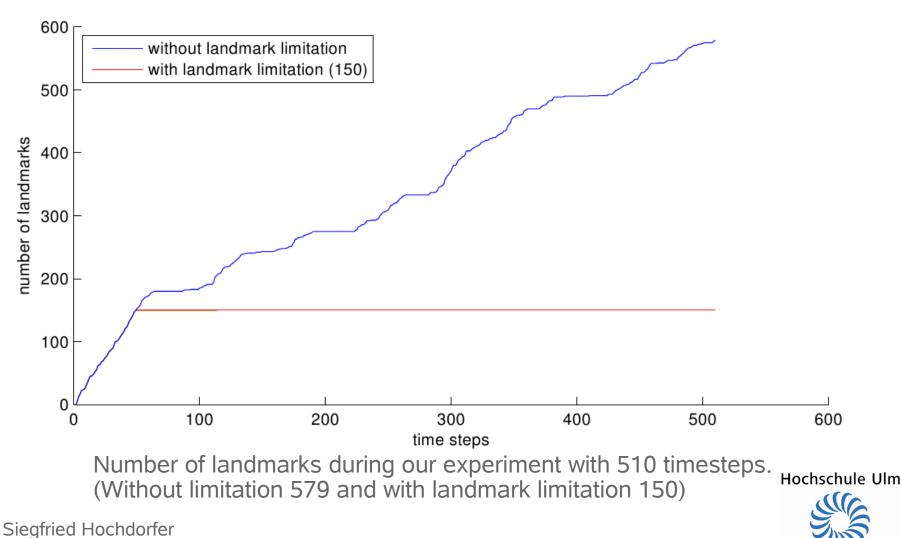
Results: Localization Quality



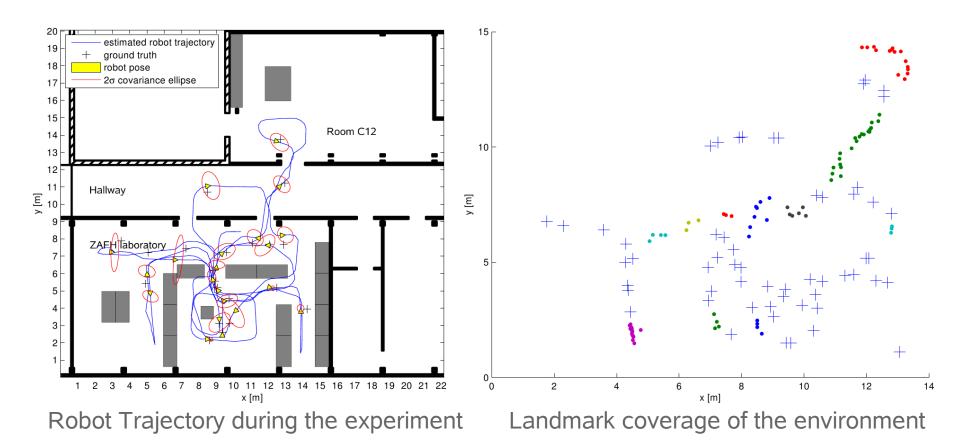


DBSCAN clustering based limitation with a maximum of 150 landmarks Hochschule Ulm

Results: Localization Quality

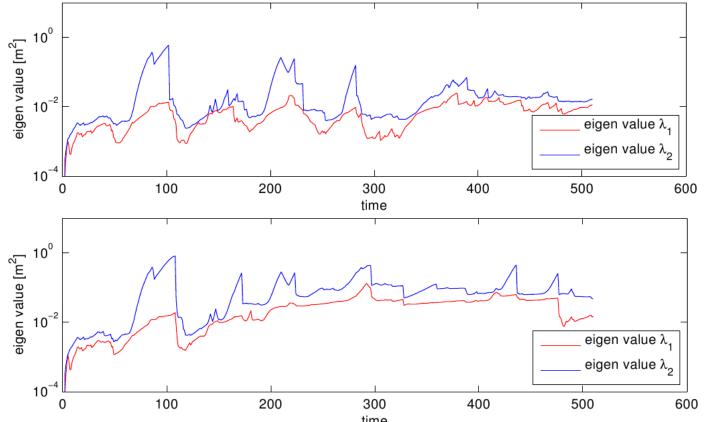


Results: Landmark Coverage



Hochschule Ulm

Results: Localization Quality



Eigenvalues of the robot position covariance matrix during the run without landmark limitation (top) and with restricted number of landmarks (bottom).

Servicerobotik Autonome Mobile Serviceroboter

Video: Visual SLAM in everyday environments

Hochschule Ulm

servicerobotik

Autonome Mobile Serviceroboter

Conclusions

The proposed approach covers the operational area with landmarks in such a way that a minimum localization quality is achieved in the whole map.

Our approach to handle the problem of an ever growing number of landmarks is a further step towards lifelong operation.

Suitability for daily use as mandatory in service robotics

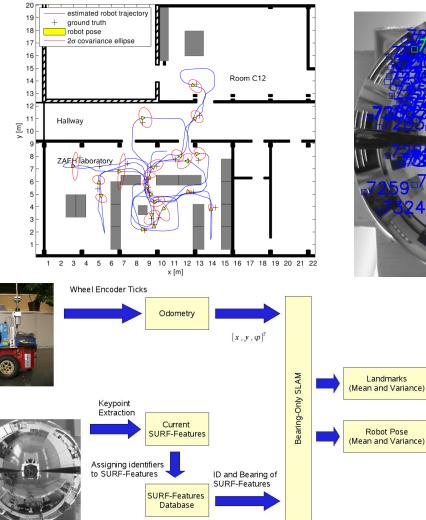
The approach can be used with all kinds of feature-based EKF SLAM approaches.

Future Work

We will focus on evaluating further approaches for landmark rating.

Hochschule Ulm

Questions?



Hochschule Ulm

[1] Bailey, T. (2003). Constrainted Initialisation for Bearing-Only SLAM, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1966-1971, Taipei, Taiwan

[2] G. Dissanayake, H. F. Durrant-Whyte, and T. Bailey, "A Computationally Efficient Solution to the Simultaneous Localisation and Map Building (SLAM) Problem", in IEEE International Conference on Robotics and Automation (ICRA), 2000, pp. 1009–1014.

[3] Herbert Bay, Tinne Tuytelaars and Luc Van Gool, "SURF: Speeded Up Robust Features", in Proceedings of the ninth European Conference on Computer Vision, 2006.

Hochschule Ulm

servicerobotik Autonome Mobile Serviceroboter

Landmark quality measures:

Shannon Information Fisher Information Information Content (Dissanayake)

covariance matrix

$$cov(L) = \begin{bmatrix} \sigma_{xx}^2 & \sigma_{yx}^2 \\ \sigma_{xy}^2 & \sigma_{yy}^2 \end{bmatrix}$$

Information content by Dissanayake[2]:

$$I_L = \frac{1}{\sigma_{xx}^2} + \frac{1}{\sigma_{yy}^2}$$

Hochschule Ulm

servicerobotik

Autonome Mobile Serviceroboter

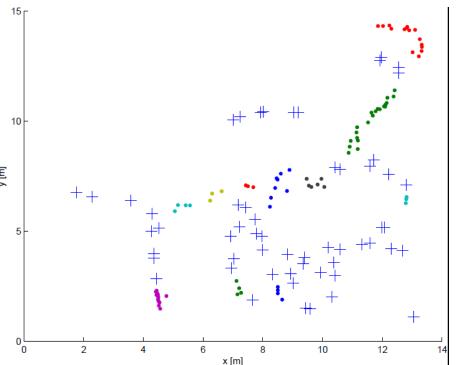
DBSCAN

density bases clustering algorithm

The algorithm typically constructs clusters around local ¹⁰ dense maxima, separated by regions of low density.

does not need to know the number of clusters in advance

only two parameters: *MinPts* and *Eps*



Hochschule Ulm

servicerobotik Autonome Mobile Serviceroboter

JCBB (Joint Compatibility Branch and Bound) indistinguishable features O(1.53ⁿ) take into account "joint probabilities"

kd-tree based method distinguishable features O(n log(n))

